LangGraph 공식문서를 번역한 내용입니다. 필요한 경우 부연 설명을 추가하였고 이해하기 쉽게 예제를 일부 변경하였습니다. 문제가 되면 삭제하겠습니다.
https://langchain-ai.github.io/langgraph/how-tos/visualization/
이 가이드는 생성한 그래프를 시각화하는 방법을 설명한다. 이 방법은 모든 그래프에서 동작한다.
준비
우선, 필요한 패키지를 설치하자.
pip install langgraph
그래프 준비
어떤 임의의 그래프, 예를 들어 StateGraph도 시각화할 수 있다. 재미있게 프랙탈을 그려보자.
import random
from typing import Annotated, Literal
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
class State(TypedDict):
messages: Annotated[list, add_messages]
class MyNode:
def __init__(self, name: str):
self.name = name
def __call__(self, state: State):
return {"messages": [("assistant", f"Called node {self.name}")]}
def route(state) -> Literal["entry_node", "__end__"]:
if len(state["messages"]) > 10:
return "__end__"
return "entry_node"
def add_fractal_nodes(builder, current_node, level, max_level):
if level > max_level:
return
num_nodes = random.randint(1, 3)
for i in range(num_nodes):
nm = ["A", "B", "C"][i]
node_name = f"node_{current_node}_{nm}"
builder.add_node(node_name, MyNode(node_name))
builder.add_edge(current_node, node_name)
r = random.random()
if r > 0.2 and level + 1 < max_level:
add_fractal_nodes(builder, node_name, level + 1, max_level)
elif r > 0.05:
builder.add_conditional_edges(node_name, route, node_name)
else:
builder.add_edge(node_name, "__end__")
def build_fractal_graph(max_level: int):
builder = StateGraph(State)
entry_point = "entry_node"
builder.add_node(entry_point, MyNode(entry_point))
builder.add_edge(START, entry_point)
add_fractal_nodes(builder, entry_point, 1, max_level)
# Optional: set a finish point if required
builder.add_edge(entry_point, END) # or any specific node
return builder.compile()
app = build_fractal_graph(3)
Mermaid
또한 그래프 클래스를 Mermaid 구문으로 변환할 수 있다.
print(app.get_graph().draw_mermaid())
%%{init: {'flowchart': {'curve': 'linear'}}}%%
graph TD;
__start__([<p>__start__</p>]):::first
entry_node(entry_node)
node_entry_node_A(node_entry_node_A)
node_entry_node_B(node_entry_node_B)
node_node_entry_node_B_A(node_node_entry_node_B_A)
node_node_entry_node_B_B(node_node_entry_node_B_B)
node_node_entry_node_B_C(node_node_entry_node_B_C)
__end__([<p>__end__</p>]):::last
__start__ --> entry_node;
entry_node --> __end__;
entry_node --> node_entry_node_A;
entry_node --> node_entry_node_B;
node_entry_node_B --> node_node_entry_node_B_A;
node_entry_node_B --> node_node_entry_node_B_B;
node_entry_node_B --> node_node_entry_node_B_C;
node_entry_node_A -.-> entry_node;
node_entry_node_A -.-> __end__;
node_node_entry_node_B_A -.-> entry_node;
node_node_entry_node_B_A -.-> __end__;
node_node_entry_node_B_B -.-> entry_node;
node_node_entry_node_B_B -.-> __end__;
node_node_entry_node_B_C -.-> entry_node;
node_node_entry_node_B_C -.-> __end__;
classDef default fill:#f2f0ff,line-height:1.2
classDef first fill-opacity:0
classDef last fill:#bfb6fc
PNG
선호하는 방식에 따라 그래프를 .png 파일로 렌더링할 수 있습니다. 여기에는 세 가지 옵션이 있다.
- Mermaid.ink API 사용 (추가 패키지 불필요)
- Mermaid + Pyppeteer 사용 (pip install pyppeteer 필요)
- Graphviz 사용 (pip install graphviz 필요)
Mermaid.Ink 사용
기본적으로 draw_mermaid_png()
는 Mermaid.Ink의 API를 사용하여 다이어그램을 생성한다.
from IPython.display import Image, display
from langchain_core.runnables.graph import CurveStyle, MermaidDrawMethod, NodeStyles
display(
Image(
app.get_graph().draw_mermaid_png(
draw_method=MermaidDrawMethod.API,
)
)
)
Mermaid + Pypeteer
pip install pyppeteer nest_asyncio
import nest_asyncio
nest_asyncio.apply()
display(
Image(
app.get_graph().draw_mermaid_png(
curve_style=CurveStyle.LINEAR,
node_colors=NodeStyles(first="#ffdfba", last="#baffc9", default="#fad7de"),
wrap_label_n_words=9,
output_file_path=None,
draw_method=MermaidDrawMethod.PYPPETEER,
background_color="white",
padding=10,
)
)
)
Graphviz 사용
pip install pygraphviz
try:
display(Image(app.get_graph().draw_png()))
except ImportError:
print(
"You likely need to install dependencies for pygraphviz, see more here https://github.com/pygraphviz/pygraphviz/blob/main/INSTALL.txt"
)
LangGraph 참고 자료
- Controllability
- Persistence
- Memory
- Human-in-the-loop
- Streaming
- Tool calling
- Subgraphs
- State Management
- Other
- Prebuilt ReAct Agent
반응형